Multivalued elliptic equation with exponential critical growth in R2

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two Dimensional Elliptic Equation with Critical Nonlinear Growth

We study the asymptotic behavior of solutions to a semilinear elliptic equation associated with the critical nonlinear growth in two dimensions. { −∆u = λueu , u > 0 in Ω, u = 0 on ∂Ω, (1.1) where Ω is a unit disk in R2 and λ denotes a positive parameter. We show that for a radially symmetric solution of (1.1) satisfies ∫ D |∇u| dx → 4π, λ ↘ 0. Moreover, by using the Pohozaev identity to the re...

متن کامل

Elliptic Equations and Systems with Subcritical and Critical Exponential Growth Without the Ambrosetti–Rabinowitz Condition

In this paper, we prove the existence of nontrivial nonnegative solutions to a class of elliptic equations and systems which do not satisfy the Ambrosetti– Rabinowitz (AR) condition where the nonlinear terms are superlinear at 0 and of subcritical or critical exponential growth at ∞. The known results without the AR condition in the literature only involve nonlinear terms of polynomial growth. ...

متن کامل

Elliptic equations in R with one-sided exponential growth

We consider elliptic equations in bounded domains Ω ⊂ R with nonlinearities which have exponential growth at +∞ (subcritical and critical growth respectively) and linear growth λ at −∞, with λ > λ1, the first eigenvalue of the Laplacian. We prove that such equations have at least two solutions for certain forcing terms; one solution is negative, the other one is sign-changing. Some critical gro...

متن کامل

Bifurcation diagram of solutions to elliptic equation with exponential nonlinearity in higher dimensions

We consider the following semilinear elliptic equation:    −∆u = λeup in B1, u = 0 on ∂B1, (0.1) where B1 is the unit ball in R, d ≥ 3, λ > 0 and p > 0. First, following Merle and Peletier [13], we show that there exists a unique eigenvalue λp,∞ such that (0.1) has a solution (λp,∞,Wp) satisfying lim|x|→0 Wp(x) = ∞. Secondly, we study a bifurcation diagram of regular solutions to (0.1). It f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2016

ISSN: 0022-0396

DOI: 10.1016/j.jde.2016.07.006